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orthogonality of quantum propositions in terms of chains of 
filters 
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Department of Physics, Faculty of Science, POB 550, 11001 Belgrade, Yugoslavia 

Received 4 January 1985 

Abstract. Let p (  F o  E, p )  denote the probability of a yes result of the yes-no effect obtained 
by putting the filter of the quantum proposition F (a projection operator) after that of the 
proposition E in the quantum state p (a statistical operator). It is pointed out that 
E F =  F E O V p : p ( E o F ,  p ) = p ( F o E ,  p ) ,  E F =  E o V p :  p ( E 0 F . p )  = p ( E , p ) , a n d E F  = O O  
Vp: p (  E 0 F, p )  = 0. Proof is given for generalisations of these simple characterisations to 
arbitrary strings (products of operators) and chains (of filters). Other cases of parallelism 
between strings and chains and departure from it are also studied. 

1. Introduction 

In a previous article (Herbut 1984) an answer has been given to the old question 
(Birkhoff and von Neumann 1936, Mackey 1963): What is the empirical meaning of 
meets and joins in quantum logic? The proposed solution was given in terms of perfect 
filters (cf Messiah 1961, P V.13) corresponding to quantum propositions, put in series 
to make chains. 

This study (like that in the mentioned previous article) is made from the point of 
view of quantum mechanics as it stands. We have a Hilbert space (state space) % 
associated with the quantum system. The projection operators E, F, G, H, etc in 2t 
are the quantum propositions, and the statistical operators p are the states. We denote 
the set of all p by 9’. 

It is the aim of this paper to explore a close parallelism that exists between algebraic 
binary relations between projection operators (quantum propositions) and probability 
statements on chains of perfect filters that correspond to the quantum propositions. 
In this way characterisations of compatibility, comparability and orthogonality of 
quantum propositions are obtained. 

Let E and F be two quantum propositions. Putting their perfect filters in series, 
that of F immediately after that of E, one obtains a (composite) filter, but it is not 
necessarily a perfect one. If this chain ends with a detector, the number of systems 
that pass the composite filter can be counted, and one thus has a yes-no experiment 
that one writes as F O E  (read ‘0’ as ‘after’). It was shown that in the case of 
HOG. .  . -0 Fo E one has for the probability of this experiment in the state p :  

p (  Ho Go. . . o  Fo E, p )  = Tr E F .  . . GHG.  . . FEp (1) 
(see lemma 1 in Herbut 1984). 
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2. Strings of projection operators and chains of filters 

To the idempotency E E  = E of a projection operator E there corresponds a parallel 
empirical fact in terms of filters (cf (1 ) ) :  

v p  E Y :  P ( E O E ,  p ) = p ( E ,  P ) .  

The following three theorems reveal a striking parallelism between the most impor- 
tant strings (products) of projection operators and the corresponding chains of filters. 

Theorem 1 .  Two quantum propositions E and F are compatible, i.e. 

E F =  FE ( 2 a )  

Q p  E Y :  P ( E " F ,  P ) = P ( F o E ,  P I .  ( 2 b )  

if and only if 

Theorem 2. Two quantum propositions E and F are comparable, e.g. E d F, i.e. 

E F =  E ( 3 a )  

if and only if 

v p  E Y :  P ( E O F ,  P )  = p ( E ,  P ) .  

Theorem 3. The quantum propositions E and F are orthogonal to each other, i.e. 

E F = O  (4a 1 
if and only if 

v p  E Y :  P ( E  0 F, P )  = P ( 0 ,  P) = 0. ( 4 b )  

We give no separate proof for theorems 1-3 because they are special cases of 
general results derived below. 

Dejnition. A string (product) of two alternating projection operators E and F, e.g., 
FEFEFE, we write as S (  E,  6 )  (it begins with E reading from right to left, and its length 
is 6 operators). In S (  E,  n), S (  F, n ' )  we always have n, n ' z  2 .  The corresponding chains 
(of filters) are: Fo E 0 F 0 E 0 Fo E = C( E, 6) etc. Two strings (chains) are equal if they 
begin with the same projection operator (filter) and have the same length. 

To derive general parallel statements on strings and chains, we need auxiliary 
results on two arbitrary projection operators E and F. Let us define a third projection 
operator G as a function of E and F such that 

R ( G ' ) = { x :  [ E ,  F ] x = 0 }  ( 5 )  

( R  denotes the range, and G'- = 1 - G). 

Lemma 1 .  The subspace R ( G )  is invariant for both E and F, and zero is the only 
common eigenvector of E and F in R ( G ) .  

ProoJ: To prove the first claim it is sufficient to show that R(G') is invariant. Let 
b E R(G'). Then [ E ,  F ] b  = 0, and [ E ,  F ] ( E b )  = ( E F E  - F E ) b  = [ E ( E F ) -  FEIb = 
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[ E ,  F ] b  = 0, and  symmetrically for F. The second claim follows from the fact that E 
and F commute when acting on a common eigenvector, and  hence this vector must 
belong also to R(G’) as obvious from (5). 

Lemma 2. For every 0 # a E R (  G ) ,  and every string S made up  of E and F, one has 
Sa = 0 only if Ha = 0, where H = ( E  or F )  is the projection operator with which S 
begins. 

Proof: We assume ab contrario that 3 0 # a E R (  G ) :  Sa = 0 and Ha # 0. Let S = . . . S’ ,  
where S’ is the longest string (or only H ) ,  part of S,  such that S‘a # 0. Let S’ end 
with F e.g. Then we have F(S’a) = ( S ’ a ) ,  and E ( S ’ a )  = 0 (because S = . . . ES’) in 
contradiction with lemma 1. 

Lemma 3. Let S and S‘ be two distinct strings made up  of the projection operators 
E and F, let them both begin with the same operator, e.g. E, and let S’ be longer than 
S. Then for each 0 # a E R (  G), we have IIS‘a / /  < IISal/ unless Ea = 0. 

Proof: Let a E R ( G ) ,  a # 0 # Ea. Then, according to lemma 2 ,  Sa # 0. Let S end with 
F, for example. Then F ( S a )  = Sa, and this implies E ( & )  # (Sa)  due  to lemma 1, 
resulting in 1 )  ESa / /  < 1 1  Sa 11. Finally, /I S’a I /  1 1  ESa 11 (since S‘ = . . . E S ) ,  and the proof 
is completed. 

Now we are prepared to establish the mentioned generalisations. 

Lemma 4. Let E and F be projection operators, and  let S and S’ be arbitrary distinct 
strings made up  of of them. The quantum propositions E and F are compatible if and  
only if 

s = S’.  ( 6 0 )  

Proof: The necessity of (6a)  obviously follows from ( 2 a )  and the idempotency of the 
projection operators. To prove the sufficiency of ( 6 a ) ,  we assume ab contrario that 
[E,  F ]  # 0,  i.e. that G # 0 (see (5)). Further, we first assume that both S and S’ begin 
with the same projection operator, e.g. E, and that, for example, S‘ is longer than S. 
Taking 0 # a E R(  G ) ,  Ea # 0,  lemma 3 brings us in contradiction with ( 6 a ) .  

Secondly, we assume that, for example, S begins with E, and that S’ begins with 
F, and that n and n’ are the lengths of S and  S’ respectively. Let 0 # a E [ R (  G )  n R( E ) ] .  
Then Sa = sa, where s is the string (or F )  obtained from S by dropping E from the 
right, and its length is n - 1. According to lemma 1, Fa # 0 ,  hence sa = S‘a (cf ( 6 a ) )  
implies n - 1 = n’ on account of lemma 3. Now, we take symmetrically: O #  b E 

[ R ( G )  n R ( F ) ] .  Then S’b = S’b, etc. In this manner (6a)  leads to n‘- 1 = n. Both 
conditions on the lengths give n - 1 = n + 1, which is impossible. 

Theorem 4. Let E and F be quantum propositions, and  let C and C‘ be arbitrary 
distinct chains made u p  of their filters. Then E and F are compatible if and only if 

v p  E Y: P(C,  P )  = P(C’,  P I .  ( 6 b )  

Proof: The necessity of ( 6 b )  is evident from (1) and (2a ) .  To prove its sufficiency, we 
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rewrite (1) in the form 

VP E 9, V C :  p (  C, p )  = Tr Scp ( 7 )  

where Sc is the string corresponding to C in the sense of (1). Restricting oneself to 
pure states, it is easy to show that ( 6 b )  implies 

sc = s,. 
and then lemma 4 gives [ E ,  F ]  = 0. 

Putting C = E 0 F and C’E Fo E, theorem 4 gives theorem 1 

Lemma 5. Let E and F be projection operators, and  let S be an  arbitrary string made 
up  of them. The quantum propositions E and F are comparable, e.g. E S F, if and 
only if 

S = E. ( 8 a )  

ProoJ: Evidently, ( 8 a )  follows from E s F @  E F  = E. To prove the converse implica- 
tion, we assume ab contrario that [ E ,  F ]  # 0,  and we take 0 # a E [ R(  G )  n R(  E ) ]  (cf 
( 5 ) ) .  According to lemma 1, Fa # a, further S necessarily contains at least one F, 
hence IISa/l< Ila 1 1  = I /  Ea11 (cf the proof of lemma 3) in contradiction with (8a ) .  Thus, 
[ E ,  F ]  = 0. Then ( 8 a )  collapses to EF = E. 

Theorem 5. Let E and F be quantum propositions, and let C be a n  arbitrary chain 
made up  of their filters. Then E and F are comparable, e.g. E S F, if and  only if 

v p  E Y :  P(C, P I  = p ( E ,  P). ( 8 b )  

Proof: The necessity of ( 8 6 )  follows immediately from (1) and  ( 3 a ) .  We obtain its 
sufficiency by rewriting ( 8 b )  via ( 7 )  and arriving at S ,  = E. Then lemma 5 supplies 
the last step. 

Substituting C by E o F  in theorem 5 we obtain theorem 2. 

Lemma 6. Two quantum propositions E and F are orthogonal if and  only if, taking 
an arbitrary string S made up  of them, we have 

s=o. (9a) 

ProoJ: Relation ( 9 a )  obviously follows from orthogonality (cf (4a)).  Conversely, if 
(9a) is valid, lemma 2 shows that G#O is not tenable. Owing to commutation of E 
and F, then, (9a)  becomes E F  = 0. 

Theorem 6. Two quantum propositions E and F are orthogonal if and  only if, taking 
an  arbitrary chain C made up  of their filters, one has 

v p  E Y :  P ( c , P ) = P ( o ,  PI= ( ) .  (9bi 

Proof: Orthogonality immediately implies ( 9 6 )  via (1). Conversely, (9b), when rewrit- 
ten in the form of (7 ) ,  gives Sc = O .  Finally, then lemma 6 establishes the proof. 
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Replacing C by E o F  in theorem 6, theorem 3 is obtained. 

3. More parallelisms and characterisations 

Proposition 1 .  A quantum proposition E and a quantum state p stand in such a relation 
to each other that 

p ( E ,  P )  = P(1,  P )  = 1 

Ep = l p  = p. 

( loa )  

if and only if 

( l o b )  

This claim was proved in appendix A of a previous article (Herbut 1969). 

Proposition 2. A quantum proposition E and a quantum state p are such that 

P(E, p )  = P(0, P )  = 0 

Ep = Op = 0. 

(1 la )  

(1lb)  

if and only if 

Proox This is obtained by substituting E by E'= 1 - E  in proposition 1. 

Theorem 7. One has 

lim S( E, n )  = lim S( F, n )  
n-m n - m  

Proox The proof of (12a) follows from the fact that the binary meet operation is 
symmetric: 

E A F =  F A  E = lim (FEF)"  = lim ( F E ) "  
n-a2 n - X  

The first expression for the meet is proved in the book of Halmos (1967). The second 
is obtained as follows: 

+lim (FE)"+'  = lim ( F E F ) "  = E  A F. 
"+cc n - a  

Finally, S ( E ,  2 n )  = ( F E ) " ,  +limn+m S ( E ,  n )  = E A E 

LHS= lim Tr(EF)k(FE)kp=l im T ~ ( E F E ) " - ' ~ = T ~ ( E A F ) ~ = T ~ ( F A E ) ~ = R H s .  

As to (12b), putting n =2k, and utilising ( l ) ,  one has 

k-m n-m 

It was shown (Herbut 1984) that the LHS of (12b) is the probability in the state p 
of the quantum proposition ( E  A F) equalling the LHS of (12a). 
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We end this series of examples of characterisations through parallelisms with a 
counterexample. While for any two projection operators E and F one has 

E = EF+EF' (14a) 

(an identity), the corresponding relation in terms of filters is another criterion for 
compatibility. 

Theorem 8. Two quantum propositions E and F are compatible if and only if 

v p  E 9: ~ ( E , p ) = p ( E . F , p ) + p ( E o F ' , p ) .  ( 1 4 ~  

Proof: Making use of ( l ) ,  one rewrites (14b) as 

v p  E 9: Tr Ep = Tr FEFp + Tr F L  EF'p. ( 1 5 )  

Restricting the states to pure ones, one easily establishes that ( 1 5 )  is equivalent to 

E = FEF+ F 'EFl  

Finally, this is, in turn, obviously equivalent to [ E ,  F ]  = 0. 

4. Comments 

(i)  It is easy to show that in all above statements involving all states p, one can 
confine oneself to the pure states without any loss of generality. Then, owing to 
p = I $ ) ( $ ( ,  ( 1 )  becomes (cf (7)):  

P(C, I+)) = (+Iscl+). 
Further, ( lob)  and ( 1  1 6 )  take the respective forms: 

El$)= 1l$)=l9) 
EI+)=OI+)=O. 

Thus, propositions 1 and 2 give simple physical meaning to the eigen equation of a 
projection operator, and indirectly (through the spectral form) to that of any Hermitian 
operator (observable). 

(ii) Putting C = E 0 Fo E 0 F, and C' = E 0 F in theorem 4, we see that two quantum 
propositions E and F are compatible if and only if the composite filter E o F  is 
idempotent. 

(iii) Theorem 4 makes it clear that incompatibility of E and F shows up in every 
fixed pair of distinct chains C and C'. It is straightforward, applying lemmas 1 to 3, 
to find out in which states p this takes place. 

(iv) i n  classical physics statement ( 6 6 )  is valid for every pair of chains C and C', 
and for every pair of propositions E and F. In quantum mechanics (66) is still valid 
for some pairs E, F (for the compatible ones). In a possible future third kind of 
physics a further splitting might affect also the pairs of chains. It is one of the basic 
aims of quantum logic to keep an eye on possible new developments of this kind. 
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